MIT International Center for Air Transportation ### Decision-Support for Enhancing Aviation Weather Information Systems and Safety LAURENCE VIGEANT-LANGLOIS LANGLOIS@MIT.EDU R. JOHN HANSMAN, JR. RJHANS@MIT.EDU #### **Overview** Objective: Enhance Information System Approach: Study the Influence of Weather Information Predicated on Explicit Articulation of Avoidance & Escape Options on Pilot Decision-Making #### **Motivation** #### Aviation Weather - ⇒ Safety - Contributing Factor in Accidents (22.5% US Commercial Aviation, 72% Worldwide) - ⇒ Efficiency - □ Major Source of Inefficiencies (Ground and Air Delays) - ⇒ Economics - □ \$1.35B (Accidents) + \$2.1B (Inefficiencies) #### Weather Information - ⇒ Opportunities with Deployment of New Technologies in CNS - □ Datalink, Weather Surveillance - ⇒ Supports Front-Line Human Actor, Proven to Be - □ Source of Major Failure - □ Ultimate Barrier to Accidents - □ Maintainer of Performance in Degraded Situations #### **Weather-Related Decisions as Layers of Safety** Plan Generation & Evaluation Only Layer of Safety Go / No-Go which is NOT a **Human Decision Influenced by Weather Information Equipment Management Designed Tolerance Avoidance Escape** Wx Hazard Accident **Trajectory** ## Weather Information Network (In Development) #### **Aviation Wx Abstraction** Flight Vehicle Hazard Encounter State Space Representation - Adverse Wx Phenomena Characteristics - ⇒ Spatially Distributed & Bounded - ⇒ Transient - ⇒ Partially Non-Deterministic - ⇒ Hazardous - Representation Issues - ⇒ 3D Information - Boundaries - ⇒ Transient - □ Forecast - Ageing Information - □ Uncertain - Phenomena Description / Understanding - Impact / Severity on Flight Vehicle Operations - ⇒ Partial - □ Volume / Area Coverage - Spatial Data Points - ⇒ Involves Risk Assessment - ➤ E.g., Icing, Thunderstorms, Turbulence #### **Problem Statement** - Weather Information Can Take Multiple Forms - ⇒ Inform on Exposure to Hazard, or Risk [Certainty x Severity]? - ⇒ Support Routing Optimization Based on Seeing and Avoiding Threat in Field? - ⇒ Support Avoidance and Escape Evaluation? - Investigate Decision-Support Model Predicated on Escape Plan - ⇒ Value of Information About Non-Hazard Areas (Vigeant-Langlois & Hansman, 2000) - ⇒ Value in Supporting Option-Based Decision-Making (Dershowitz, 1997) - ⇒ Technically Easier to Detect Hazard-Free Space with High Confidence - ⇒ If True, Can Pose "No-Safe-Escape" Avoidance Problem - ⇒ Draw Analogy Between "Soft" and "Hard" Hazard Avoidance (Kuchar, 1995; Yang, 2000) # Icing Display Feature Matrix Web-Based Study of 600 Pilots | Display | Name in Web-
Based
Experiment | Graphical
Representation | Sensor
Range
[nm] | Vertical View | Type of Icing Info. | |--------------------------------------|---|-----------------------------|-------------------------|--|-------------------------------| | Display A | Textual
Information | × | × | × | × | | Oisplay B (3D, min range, 3 levels) | Airborne Icing
Severity System | - | 25
(Min.
Range) | 200 t
200 t | Icing
Severity
3 Levels | | Display C (3D, max range, 1 levels) | Ground-based
Icing Presence
System | | 50
(Max.
Range) | 2000
2000
2000
2000
2000
2000
2000
200 | Icing
Presence
1 Level | | Display D (2D, max range, 3 levels) | Satellite-based
Icing Severity
System | AND ALL | 50
(Max.
Range) | × | Icing
Severity
3 Levels | | Display E (3D, max range, 3 levels) | Ground-based
Icing Severity
System | PAR STANDARD | 50
(Max.
Range) | (2000) 140 (E) (2000) (| Icing
Severity
3 Levels | - Icing Severity vs. Icing Presence - ⇒ No Significant Improvement in Decision Quality - □ Avoidance & Escape Decisions ↔ Information on Ice-Free Zones - ⇒ More Direct Inference of Ice-Free Zones (T > 0°C or LWC = 0) than Icing Severity Icing Products Based on Ice-Free Zones Easier and More Useful to Produce #### **Problem Statement** - Weather Information Can Take Multiple Forms - ⇒ Inform on Exposure to Hazard, or Risk [Certainty x Severity]? - ⇒ Support Routing Optimization Based on Seeing and Avoiding Threat in Field? - ⇒ Support Avoidance and Escape Evaluation? - Investigate Decision-Support Model Predicated on Escape Plan - ⇒ Value of Information About Non-Hazard Areas (Vigeant-Langlois & Hansman, 2000) - ⇒ Value in Supporting Option-Based Decision-Making (Dershowitz, 1997) - ⇒ Technically Easier to Detect Hazard-Free Space with High Confidence - ⇒ If True, Can Pose "No-Safe-Escape" Avoidance Problem - ⇒ Draw Analogy Between "Soft" and "Hard" Hazard Avoidance (Kuchar, 1995; Yang, 2000) #### Weather Information System (In Development) #### **FAA Convective Wx PDT** #### **Decision Process Model** (Partial / Routing-Related) # Avoidance/Escape /Other Route Optimization #### **Hazard-Related Space** #### **Tactical Avoidance** #### **Tactical Escape** #### Research Approach #### Objective ⇒ Study the Influence of Weather Information Predicated on Explicit Articulation of Avoidance & Escape on Pilot Option Selection #### Proposed Work - ⇒ Refine Weather Info and Decision Models - ⇒ Develop Prototype Displays to Support Avoidance and Escape Decisions - ⇒ Evaluate Performance/Benefits of Prototype Displays - ⇒ Make Recommendations - □ Weather Information System Architecture - □ Sensors - □ Displays - Dissemination MIT International Center for Air Transportation ### Decision-Support for Enhancing Aviation Weather Information Systems and Safety LAURENCE VIGEANT-LANGLOIS LANGLOIS@MIT.EDU R. JOHN HANSMAN, JR. RJHANS@MIT.EDU